Localised control for non-resonant Hamiltonian systems

نویسنده

  • M Vittot
چکیده

We present a method of localised control of chaos in Hamiltonian systems. The aim is to modify the perturbation locally by a small control term which makes the controlled Hamiltonian more regular. We provide an explicit expression for the control term which is able to recreate invariant (KAM) tori without modifying other parts of phase space. We apply this method of localised control to a forced pendulum model, to the delta-kicked rotor (standard map) and to a non-twist Hamiltonian. PACS numbers: 05.45.-a, 05.45.Gg Localised control for non-resonant Hamiltonian systems 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS

In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.  

متن کامل

Conformal Maps, Monodromy Transformations, and Non-reversible Hamiltonian Systems

According to Arnol’d and Sevryuk, a Hamiltonian vector field XH is said to be weakly reversible if φ∗XH = −XH for some germ φ of real analytic transformation with φ(0) = 0, while XH is reversible if additionally φ is an involution, i.e., φ = Id. One also says that α1, . . . , αn are non-resonant, if k · α ≡ k1α1 + · · · + knαn = 0 (3) for all integers kj with k = (k1, . . . , kn) = 0. The main ...

متن کامل

Non-Integrability and Infinite Branching of Solutions of 2DOF Hamiltonian Systems in Complex Plane of Time

It has been proved by S.L.Ziglin [1], for a large class of 2-degree-of-freedom (d.o.f) Hamiltonian systems, that transverse intersections of the invariant manifolds of saddle fixed points imply infinite branching of solutions in the complex time plane and the non–existence of a second analytic integral of the motion. Here, we review in detail our recent results, following a similar approach to ...

متن کامل

On Poincaré - Treshchev Tori in Hamiltonian Systems

We study the persistence of Poincaré Treshchev tori on a resonant surface of a nearly integrable Hamiltonian system in which the unperturbed Hamiltonian needs not satisfy the Kolmogorov non-degenerate condition. The persistence of the majority of invariant tori associated to g-nondegenerate relative equilibria on the resonant surface will be shown under a Rüssmann like condition.

متن کامل

Resonant Hamiltonian Systems Associated to the One-dimensional Nonlinear Schrödinger Equation with Harmonic Trapping

We study two resonant Hamiltonian systems on the phase space L2(R → C): the quintic one-dimensional continuous resonant equation, and a cubic resonant system that appears as the modified scattering limit of a specific NLS equation. We prove that these systems approximate the dynamics of the quintic and cubic one-dimensional NLS with harmonic trapping in the small data regime on long times scale...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004